Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Human skeleton-based action recognition algorithm based on spatiotemporal attention graph convolutional network model
LI Yangzhi, YUAN Jiazheng, LIU Hongzhe
Journal of Computer Applications    2021, 41 (7): 1915-1921.   DOI: 10.11772/j.issn.1001-9081.2020091515
Abstract917)      PDF (1681KB)(923)       Save
Aiming at the problem that the existing human skeleton-based action recognition algorithms cannot fully explore the temporal and spatial characteristics of motion, a human skeleton-based action recognition algorithm based on Spatiotemporal Attention Graph Convolutional Network (STA-GCN) model was proposed, which consisted of spatial attention mechanism and temporal attention mechanism. The spatial attention mechanism used the instantaneous motion information of the optical flow features to locate the spatial regions with significant motion on the one hand, and introduced the global average pooling and auxiliary classification loss during the training process to enable the model to focus on the non-motion regions with discriminability ability on the other hand. While the temporal attention mechanism automatically extracted the discriminative time-domain segments from the long-term complex video. Both of spatial and temporal attention mechanisms were integrated into a unified Graph Convolution Network (GCN) framework to enable the end-to-end training. Experimental results on Kinetics and NTU RGB+D datasets show that the proposed algorithm based on STA-GCN has strong robustness and stability, and compared with the benchmark algorithm based on Spatial Temporal Graph Convolutional Network (ST-GCN) model, the Top-1 and Top-5 on Kinetics are improved by 5.0 and 4.5 percentage points, respectively, and the Top-1 on CS and CV of NTU RGB+D dataset are also improved by 6.2 and 6.7 percentage points, respectively; it also outperforms the current State-Of-the-Art (SOA) methods in action recognition, such as Res-TCN (Residue Temporal Convolutional Network), STA-LSTM, and AS-GCN (Actional-Structural Graph Convolutional Network). The results indicate that the proposed algorithm can better meet the practical application requirements of human action recognition.
Reference | Related Articles | Metrics